ANTAL BERÉNYI

University of Szeged Albert Szent-Györgyi Medical School Department of Physiology

MTA-SZTE 'Lendület' Oscillatory Neuronal Networks Research Group

Address: Dóm tér 10., H-6720 Szeged, Hungary

RESEARCH AREA

Recent technical development gave a new momentum to experiments studying the brain, although the extremely complex structure of the nervous system still supplies the researchers with an endless inventory of open questions. In our research we investigate the possible therapeutic effects of Transcranial Electrical Stimulation (TES) on epileptic seizures. Particularly, we plan to develop a focused stimulation protocol both in time and space to interact only with the desired brain areas within an appropriate time-frame. To determine the appropriate focal points of stimulation, we investigate the internal dynamics of neural networks involved in seizure generation. We do this by performing a throughout analysis of networks on microscopic and mesoscopic scale with extremely high spatial and temporal resolution. The same approach is used to focus on the role of hippocampus and related circuitries in memory formation and spatial navigation. We pay special interest to the role of sensory information in this field.

Our long-term vision is to develop a closed-loop, implantable seizure suppressor device that continuously monitors the patterns of brain activity, and delivers electrical pulses in order to terminate any occurring seizures. We are hoping to translate our laboratory-stage experimental results into clinical trials within a few years.

TECHNIQUES AVAILABLE IN THE LAB

Extra- and juxtacellular recording techniques, transcranial electrical stimulation, freely moving animal models to study the correlation of behavior and neuronal activity patterns, basic histology and immunohistochemistry, double transgenic animal models for optogenetical research, analog and digital electronics development, microcontroller programming, signal processing algorithms, advanced data mining techniques, Matlab and Labview programming languages, non-supervised pattern recognition algorithms.

SELECTED PUBLICATIONS

Oliva, A., Fernández-Ruiz, A, Buzsáki, G., **Berényi, A.** (2016) Role of Hippocampal CA2 Region in Triggering Sharp-Wave Ripples. **Neuron 91:** 1342-55.

Agarwal, G., Stevenson, I.H., **Berényi, A.**, Mizuseki, K., Buzsáki, G., Sommer FT. (2014) Spatially distributed local fields in the hippocampus encode rat position. **Science 344:** 626-30.

Berényi, A., Somogyvári, Z., Nagy, A.J., Roux, L., Long, J.D., Fujisawa, S., Stark, E., Leonardo, A., Harris, T.D., Buzsáki, G. (2014) Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals. **J Neurophysiol 111:** 1132-49.

Berényi, A., Belluscio, M., Mao, D., Buzsaki, G. (2012) Closed-loop control of epilepsy by transcranial electrical stimulation. **Science 337:** 735-737.

Madisen, L., Mao, T., Koch, H., Zhuo, J.M., **Berényi, A.**, Fujisawa, S., Hsu, Y.W., Garcia, A.J. 3rd., Gu, X., Zanella, S., Kidney, J., Gu, H., Mao, Y., Hooks, B.M., Boyden, E.S, Buzsáki, G., Ramirez, J.M., Jones, A.R., Svoboda, K., Han, X., Turner, E.E., Zeng, H.A. (2012) Toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. **Nat Neurosci 15:** 793-802.