LÁSZLÓ VÍGH

Biological Research Centre Institute of Biochemistry

Address: Temesvári krt. 62., H-6726 Szeged, Hungary

RESEARCH AREA

As a "central dogma" earlier it was suggested that stressinduced protein denaturation serves as a major stresssensing machinery, which triggers the expression of the molecular chaperone heat shock proteins (HSPs). We have introduced a new but not exclusive cellular "membrane thermosensor" model, which predicts the existence of membrane-associated stress sensing and signaling mechanisms. It proposes that changes in the physical state and composition of lipid molecular species with the concomitant destabilization/reorganization of membrane microdomains ("rafts") can serve also as "molecular switches" to operate "cellular thermometers". Using mammalian cells and the fission yeast (S.pombe) as models we intend to elucidate the mechanism of membrane-associated stress sensors, signaling pathways and the interplay and networking of potential cellular stress survival strategies. Since HSPs play a fundamental role in the pathology of several human diseases, understanding the mechanism whereby mammalian cells can elicit a stress response may also be of paramount importance for the design of novel drug molecules.

TECHNIQUES AVAILABLE IN THE LAB

Classical biochemical and molecular biology methods. Membrane biophysics: spectroscopy, Langmuir monolayers, ultrasensitive fluorescence microscopy, single molecule tracking, image analysis. Lipidomic analysis: chromatographic and mass spectrometry techniques. Multidimensional data analysis, statistical methods.

SELECTED PUBLICATIONS

Escribá, P.V., Busquets, X., Inokuchi, J.I., Balogh, G., Török, Z., Horváth, I., Harwood, J.L., **Vigh, L.** (2015) Membrane lipid therapy: Modulation of the cell membrane composition and structure as a molecular base for drug discovery and new disease treatment. **Prog Lipid Res 59:** 38-53.

Nagy, E., Balogi, Z., Gombos, I., Akerfelt, M., Björkbom, A., Balogh, G., Török, Z., Maslyanko, A., Fiszer-Kierzkowska, A., Lisowska, K., Slotte, P.J., Sistonen, L., Horváth, I., **Vigh, L.** (2007) Hyperfluidization-coupled membrane microdomain reorganization is linked to activation of the heat shock response in a murine melanoma cell line. **Proc Natl Acad Sci USA 104:** 7945-7950.

Vigh, L., Horváth, I., Maresca, B., Harwood, J.L. (2007) Can the stress protein response be controlled by ,membrane-lipid therapy'? **Trends Biochem Sci 32:** 357-363.

Török, Z., Tsvetkova, N.M., Balogh, G., Horváth, I., Nagy, E., Pénzes, Z., Hargitai, J., Bensaude, O., Csermely, P., Crowe, J.H., Maresca, B., **Vigh, L.** (2003) Heat shock protein coinducers with no effect on protein denaturation specifically modulate the membrane lipid phase. **Proc Natl Acad Sci USA 100:** 3131-3136.

Vigh, L., Literáti, P.N., Horváth, I., Török, Z., Balogh, G., Glatz, A., Kovács, E., Boros, I., Ferdinándy, P., Farkas, B., Jaszlits, L., Jednákovits, A., Korányi, L., Maresca, B. (1997) Bimoclomol: a nontoxic, hydroxylamine derivative with stress proteininducing activity and cytoprotective effects. **Nat Med 3:** 1150-1154.